If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4n^2-4n-1=0
a = 4; b = -4; c = -1;
Δ = b2-4ac
Δ = -42-4·4·(-1)
Δ = 32
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{32}=\sqrt{16*2}=\sqrt{16}*\sqrt{2}=4\sqrt{2}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-4\sqrt{2}}{2*4}=\frac{4-4\sqrt{2}}{8} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+4\sqrt{2}}{2*4}=\frac{4+4\sqrt{2}}{8} $
| x*0.75=50 | | 6x^2-60x+175=0 | | -.00635x^2+4x=-60 | | (m)+(m+2)+(m+4)=0 | | x=18=2x=-21-2x-26 | | 5x(-3x)-6x=-1 | | -2(2x+1)=(-3+1) | | 15-5x=55 | | 9+90x=8+98x | | 90+9x=98+8x | | 9+99x=8+98x | | a^2-2a=3364 | | 3/4d=-6 | | 99+9x=98+8x | | (30+2x)(12+2x)=1288 | | -4x/3-3=-19 | | 21x+7-23x=5-8 | | (x+3)/2=(2x-1)/3 | | 35=2x+9 | | 3.84x+30.72=7.68+61.44 | | 2x+3=-5x+24 | | X^2-3n-90=0 | | 3x-2(x+10=x-20 | | a^2+2a=3364 | | 4x^2+18x+280=0 | | 3(x-2)+1=-23 | | s+7/10=3 | | -4.9t+73.5=0 | | 27+2u=91 | | 10-3x+10x=5x-5+2x+8 | | .5n+7=11 | | c+9=8c-(9+7c) |